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Abstract. A mixed quantum-classical approach to simulate the coupled dynamics of electrons and nuclei
in nanoscale molecular systems is presented. The method relies on a second order expansion of the La-
grangian in time-dependent density functional theory (TDDFT) around a suitable reference density. We
show that the inclusion of the second order term renders the method a self-consistent scheme and im-
proves the calculated optical spectra of molecules by a proper treatment of the coupled response. In the
application to ion-fullerene collisions, the inclusion of self-consistency is found to be crucial for a correct
description of the charge transfer between projectile and target. For a model of the photoreceptor in retinal
proteins, nonadiabatic molecular dynamics simulations are performed and reveal problems of TDDFT in
the prediction of intra-molecular charge transfer excitations.

PACS. 31.70.Hq Time-dependent phenomena: excitation and relaxation processes, and reaction rates –
31.50.Gh Surface crossings, non-adiabatic couplings – 31.15.Ew Density-functional theory – 34.50.Bw
Energy loss and stopping power

1 Introduction

Beginning with the work of Zangwill and Soven [1], the
generalization of density functional theory to time depen-
dent phenomena (TDDFT) has become an important tool
in the description of laser-matter interaction. The possi-
ble applications are diverse and range from the calculation
of spectra (linear optical [2–4], circular dichroism [5,6],
resonant Raman [7]) to the evaluation of properties (po-
larization [8,9], hyperpolarization [10]) up to studies of
high harmonic generation [11–13] and photochemical re-
actions [14]. The formal justification of TDDFT was laid
by Runge and Gross [15], who showed that the exact many
body electron density can be obtained from single-particle
mean field equations. The solution of these time depen-
dent Kohn-Sham (TDKS) equations can be obtained ei-
ther perturbatively in the small amplitude limit [16] or by
direct numerical integration in the time domain [17]. Both
approaches have their inherent merits and disadvantages.

In the linear response regime, for example, the problem
can be recast in an eigenvalue equation in the particle-hole
representation. This allows for an interpretation of optical
spectra in terms of contributing single-particle transitions
and also for a symmetry assignment of the states. More-
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over, transitions with vanishing oscillator strength can be
located, like dark singlet or generally triplet states [65].
One of the drawbacks of this approach is the rather poor
numerical performance with a scaling of N6, where N is
the number of electrons. It should be noted, however, that
the CPU time as well as the memory demand can be
significantly reduced when iterative procedures like the
Davidson algorithm are employed.

In terms of scaling behavior, the numerical integra-
tion of the TDKS equations is much more favorable. Here,
only the set of occupied orbitals needs to be treated. Be-
cause the propagation involves only matrix-vector prod-
ucts, linear scaling can be achieved for large systems [19].
Moreover, since this approach is not restricted to small
intensities, non-linear effects like harmonic generation or
multiphoton processes can be addressed. Another advan-
tage of working in the real time domain is the possibility
to study systematically the effect of different pulse shapes
of the laser field on observables such as ionization [20].
With todays femtosecond laser sources, this is currently
an active field of experimental research [22].

Nearly all first principles applications of the real time
approach have been limited to systems with fixed nuclei.
Clearly, it would be highly desirable to study the mo-
tion of the coupled system of electrons and nuclei, which
would allow one to address problems like laser induced
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vibrational excitation or photochemical reactions. Since
the time step of such molecular dynamics simulations is
set to attoseconds by the ultrafast electronic motion, only
small systems with a few degrees of freedom can be treated
in an ab initio frame work [13,20,21]. Consequently, ap-
proximate TDDFT methods are quite successful in this
domain of application.

Different groups contributed to this field and used
their developments in a variety of different stud-
ies [14,23–38,40]. In all these approximate schemes only
the valence electrons are treated explicitly and the TDKS
orbitals are expanded in a limited (usually minimal) basis
of atomic orbitals. The Lagrangian, which is a functional
of the time dependent density, is then expanded around
a static reference density up to a certain order. In zeroth
order the Hamiltonian depends only on the reference den-
sity, which permits the calculation of the necessary matrix
elements once and for all. In this respect, the methods are
similar to tight-binding approaches, although no fitting to
experimental data is performed.

The purpose of this work is to analyze the implications
of extending the mentioned expansion, since all studies
so far were restricted to zeroth order. After a more de-
tailed description of the problem in Section 2, we test
the extension in the determination of optical spectra in
Section 3.1 as well as for nonadiabatic molecular dynam-
ics in Section 3.2. Finally, we perform an investigation
of the photochemical reaction of a retinal analogue, a
chromophore which exhibits an ultrafast radiationless de-
activation in nature. These applications in quite differ-
ent areas of molecular physics are intended to investigate
the transferability of the method and also to illustrate
the possibilities offered by an approximate solution of the
TDDFT equations.

2 Method

In order to study the dynamics of a coupled system of
electrons and nuclei, the equations of motion (EOM) need
to be determined. While the electronic EOM in the frame-
work of DFT is given by the well known time dependent
Kohn-Sham equations, the nuclear EOM or force equation
is not a priori evident. It can be derived either by exploit-
ing the fact that the total energy is a conserved quantity,
or by applying the Lagrange formalism. We follow the lat-
ter approach here and define the following Lagrangian,
which depends on the TDKS states Ψi(r t) and the nu-
clear positions RA:

L =
∑

A

1
2
MAṘ2

A

−
occ∑

i

〈Ψi(r t)|H [ρ](r t) − i
∂

∂t
|Ψi(r t)〉 − EDC − Eii, (1)

with ρ(r t) =
∑

i |Ψi(r t)|2. Here the first term is the clas-
sical kinetic energy of the ions, while the remaining terms

in equation (1) can be obtained from the TDDFT ac-
tion functional under the assumption that the exchange-
correlation (xc) contributions are local in time [45]. In
this widely used adiabatic local density approximation,
standard ground state functionals can also be used in
the time dependent context simply by evaluation at the
time dependent density. Thus, the Hamiltonian H [ρ](r t)
in equation (1) takes the common DFT form. Further-
more, EDC represents the double counting terms

EDC = −1
2

∫ ∫ ′ ρ(r t)ρ(r′t)
|r − r′| +Exc[ρ]−

∫
vxc[ρ]ρ(r t), (2)

and Eii the ion-ion repulsion (Here and in the following∫
dr′ is abbreviated as

∫ ′, and
∫
dr as

∫
).

We now proceed by applying the same kind of approxi-
mations as were used in the derivation of the density func-
tional theory based tight-binding (DFTB) method [41,42]
from static DFT. To keep the presentation concise we re-
fer to some reviews [39,40], which provide a more detailed
description of the basic concepts, practical realization and
accuracy of the ground state DFTB approach. Here, we
only report aspects, which are specific for the general-
ization to the time-dependent case. In a first step, the
Lagrangian is expanded around a reference density ρ0(r),
ρ(r t) = ρ0(r) + δρ(r t), which is given as a superposition
of atomic (ground state) densities. In contrast to our ear-
lier work [40], we now include terms up to second order in
the density fluctuations δρ(r t):

L ≈
∑

A

1
2
MAṘ2

A −
occ∑

i

〈Ψi(r t)|H [ρ0](r) − i
∂

∂t
|Ψi(r t)〉

(3a)

+
1
2

∫ ∫ ′ ρ0(r)ρ0(r′)
|r − r′| − Exc[ρ0] +

∫
vxc[ρ0]ρ0(r) − Eii

(3b)

− 1
2

∫ ∫ ′ ( 1
|r− r′| +

δvxc[ρ](r t)
δρ(r′t)

)
δρ(r t)δρ(r′t). (3c)

Please note that in this expansion all contributions which
are linear in δρ are captured by the second term in equa-
tion (3a) through the TDKS states. The terms in equa-
tion (3b) can now be subsumed as Erep, a sum of short
ranged pair potentials, which depend only on the atomic
species and the interatomic distance. Since Erep is a func-
tional of the time independent reference density ρ0 only,
it is exactly the same as used in the ground state DFTB
scheme. The second order term of equation (3c), which is
the focus of this work, is approximated as follows:

E2nd =
1
2

∫ ∫ ′ ( 1
|r − r′| +

δvxc[ρ](r t)
δρ(r′t)

)
δρ(r t)δρ(r′t)

≈ 1
2

∑

AB

∆qA(t)γAB∆qB(t). (4)
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Here the ∆qA(t) denote atomic net Mulliken charges

∆qA(t) = qA(t) − qfree atom
A

qA(t) =
1
2

occ∑

i

∑

µ∈A,ν

(
b∗µi(t)bνi(t)Sµν + b∗νi(t)bµi(t)Sνµ

)
,

(5)

where the coefficients bµi(t) are defined by the expansion
of the TDKS states in a basis of non-orthogonal atomic
orbitals φµ(r − RA)

Ψi(r t) =
∑

µ

bµi(t)φµ(r − RA), (6)

which build the overlap matrix Sµν = 〈φµ|φν〉. Further,
the function γAB in equation (4) interpolates between a
pure Coulomb interaction for large interatomic distances
and an element-specific constant in the atomic limit. This
numerically evaluated parameter includes the effects of ex-
change and correlation and is directly related to the chem-
ical hardness of the atomic species [42]. Taking the coef-
ficients and nuclear positions as generalized coordinates,
the evaluation of the Euler-Lagrange equations leads to
the desired equations of motion. As shown in more detail
in the appendix, the electronic motion obeys:

ḃνi = −
∑

δµ
S−1

νδ

[
iHδµ +

∑

A

ṘA

〈
φδ

∣∣∣∣
∂

∂RA
φµ

〉]
bµi

(7a)

with

Hµν = 〈φµ|H [ρ0]|φν〉 +
1
2
Sµν

∑

C

(γAC + γBC)∆qC .

= H0
µν +H1

µν ; ∀µ ∈ A; ν ∈ B. (7b)

In zeroth order the Hamiltonian reduces to the first term
in equation (7b) and depends solely on the reference den-
sity ρ0. For systems in the excited state or in charged or
heteronuclear structures, the electronic density differs sig-
nificantly from a simple superposition of atomic ground
state densities. To a certain extent this difference is al-
ready captured at the zeroth order level, since the coef-
ficients which solve equation (7a) correspond to a time-
dependent density different from ρ0. This is similar to
the situation in empirical tight-binding schemes for the
ground state, where even certain ionic crystals are suf-
ficiently well described [43]. However, a consideration of
the full Hamiltonian in equation (7b) leads obviously to a
more balanced treatment, because dynamical changes in
the electron density are explicitly included in a selfconsis-
tent fashion.

In this context we would also like to point out that the
present approach is not restricted to the regime of linear
response. Although the underlying Lagrangian is expected
to be a valid approximation only for small density fluctu-
ations δρ, the resulting electron density contains in any
case all orders of an externally applied field. In this way,

one can even hope to describe qualitatively the large am-
plitude motion induced by intense laser fields.

Solution of equation (7a) requires an iterative proce-
dure with timesteps in the attosecond regime. A symplec-
tic algorithm is used for this task [38], which is based on
the Cayley representation of the time evolution operator
and conserves the norm of the wavefunction exactly. Be-
sides the Hamiltonian and overlap matrices (see Ref. [40]
for details of the construction), equation (7a) contains also
the nonadiabatic coupling matrix 〈φµ| ∂

∂RA
φν〉, in which

all on-site elements (φµ, φν on the same atom) are set to
zero [44]. This allows one to relate the remaining elements
to a simple derivative of the overlap matrix.

Variation of the Lagrangian with respect to the nuclear
coordinates leads to the following expression for the forces
which is derived in the appendix (c.c. denotes the complex
conjugate):

MAR̈A = −
occ∑

i

∑

µν

b∗µibνi

(
dH0

µν

dRA
+
dSµν

dRA

∑

B

γAB∆qB

)

+
occ∑

i

∑

µνδγ

(
b∗µi

〈
dφµ

dRA

∣∣∣∣φν

〉
S−1

νδ Hδγbγi + c.c.
)

−∆qA
∑

B

dγAB

dRA
∆qB − dErep

dRA
. (8)

Since the Hamiltonian is time dependent due to an exter-
nal field or nuclear motion, the molecular orbital coeffi-
cients will in general represent a coherent superposition of
different eigenstates of the system. In this case, the nuclei
move in a mean potential according to equation (8), rather
than being restricted to a particular Born-Oppenheimer
surface as in conventional adiabatic MD approaches. In
fact, due to the coupling of the EOM, energy can be freely
exchanged between the electronic and ionic subsystems
as long as the total energy of the system is conserved.
Equations of motion that are equivalent to the ones re-
ported here, have been derived earlier by Saalmann and
Schmidt [30] as well as Todorov [37]. Including the second
order correction, they are solved here for the first time in
an actual calculation.

Todorov pointed out, that for an incomplete basis the
force equation has to be augmented by additional velocity
dependent terms, which should become important in high
energy collisions. Interestingly, omission of these terms
does not violate energy but only momentum conservation.
Hence, it is useful to monitor the total momentum (elec-
tronic + ionic) of the system if equation (8) is used, as in
every practical calculation the basis set is incomplete.

Finally, in order to simulate the interaction with elec-
tromagnetic fields, the vector potential A(r t) needs to be
incorporated, which is done via minimal coupling, p− e

cA.
A numerically efficient approximation was proposed by
Pople [46] and later by Graf and Vogl [47] as well as
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Fig. 1. Schematic illustration of trans-butadiene (C4H6).

Allen [23]. It is given by:

Hµν [r,p,A(t)] = exp
[
ie

�c
(RA − RB)A(t)

]
Hµν [r,p];

µ ∈ A, ν ∈ B, (9)

which relates the desired field dependent Hamiltonian to
the already known matrix elements of the unperturbed
one. Expression (9) was derived under the assumption that
the radiation wavelength is much larger than the molecu-
lar system under study, which is usually well fulfilled for
frequencies in the optical range.

If the interest is just on calculating optical spec-
tra, rather than the molecular motion initiated by a
laser pulse, only equation (7a) needs to be solved for a
fixed geometry. Following the approach of Yabana and
Bertsch [17,48] the field in equation (9) is turned on only
at a certain instant of time, which populates the complete
manifold of excited states. The time dependent dipole mo-
ment d(t) can then be used to calculate the dynamic po-
larizability:

α(ω) =
�c

eA

∫
eiωt (d(t) − d(0)) dt, (10)

and the dipole strength function S(ω) = 2ω/π�α(ω) of
the system; a quantity which can be directly compared to
experimental spectra.

3 Applications

3.1 Optical spectrum of trans-butadiene

As a first application of our method, we examine a pro-
totypical π-system, trans-butadiene (Fig. 1). The optical
spectrum of this molecule has been the subject of numer-
ous quantum chemical studies (see e.g. Ref. [50] and ref-
erences therein). Recently, also a detailed investigation of
the molecular dynamics in the excited state appeared [14].
Dou et al. employed the DFTB method described in this
work without the second order correction. Our interest
here is to analyze the implications of including this term.
To this end, we first relaxed the molecule with the ground
state DFTB method and recorded the optical spectrum
according to the prescription given in Section 2. After ap-
plying a vector potential of A = 0.0125 gauss cm, the
Kohn-Sham orbitals were propagated for 38.7 fs with a
time step of 12 as. Since the finite sampling introduces
spurious negative parts in the imaginary part of the po-
larizability, the dipole moment was damped with a fac-
tor of e−kt (k = 0.3 eV/�), like in reference [17]. This
also simulates dephasing or other line broadening effects
which would appear more naturally in a more complete
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Fig. 2. Dipole strength of trans-butadiene as given by the
time-dependent DFTB method in zeroth and second order [49].
Shown is an average over different molecular orientations
with respect to the polarization of the vector potential. Re-
sults obtained in the DFTB linear-response implementation of
TDDFT are shown as stick spectrum. The associated oscillator
strengths have been normalized to the maximum of the highest
energy peak.

theory. The resulting spectrum with and without second
order correction is shown in Figure 2. As can be seen, the
maximum absorption in the latter method is located at
4.21 eV. This is exactly the difference of the LUMO (low-
est unoccupied molecular orbital) and the HOMO (highest
occupied molecular orbital) energies of the ground state
DFTB method. If the second order term is included in
the calculation, the absorption is strongly blue shifted to
5.56 eV, which is in good agreement with the experimen-
tal value of 5.8 eV [51]. Along with the energy shift, a
reduction of absorption strength is also observed.

To better understand the origin of these changes, we
also performed calculations with our implementation of
the TDDFT linear response formalism [52]. In this ap-
proach, excited state singlet energies ωI are given by the
solution of the following eigenvalue problem:

∑

kl

[
ω2

ijδikδjl + 2
√
ωijKij,kl

√
ωkl

]
F I

kl = ω2
I F

I
ij . (11)

Here the ωij are energy differences between unoccupied
orbitals j and occupied orbitals i, while the so called cou-
pling matrix K describes the change of the SCF potential
due to the induced density. As equation (11) shows, the
effect of the coupling matrix is not only to shift the true
excited state away from simple orbital energy differences,
but also to couple different single-particle transitions. The
explicit form of K is given by:

Kij,kl =
∫ ∫ ′

ψi(r)ψj(r)

×
(

1
|r− r′| +

δvxc[ρ](r)
δρ(r′)

)
ψk(r′)ψl(r′), (12)

which is nothing else than the second order term of
equation (3c), when the induced density is expanded in
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particle-hole states. The results of the linear response cal-
culations with and without the coupling matrix contribu-
tion are given as stick spectrum in Figure 1. Obviously,
there is a perfect match between the real time and lin-
ear response approaches to TDDFT both in the ener-
getical position of the states and the oscillator strength.
This equivalence had to be expected, since the linear re-
sponse approach amounts to a perturbative solution of the
TDDFT equations in the small amplitude limit. A calcu-
lation illustrating this point was recently performed by
Baer and Neuhauser for a jellium model [56].

3.2 C+ – C60 collisions

Ion-cluster collisions provide an ideal application field
for approximate TDDFT molecular dynamics simulations.
This is because the number of degrees of freedom is usually
too large to be treated with first principles calculations
and also nonadiabatic effects are strong and important.
Depending on the velocity of the projectile, collisions can
induce vibrational or a combination of electronic and vi-
brational excitations of the cluster, where the latter type
cannot be described in conventional Born-Oppenheimer
dynamics. In this context, Kunert and Schmidt under-
took a systematic investigation of ion-fullerene collisions
and provided an explanation for seemingly conflicting ex-
perimental observations [35]. Their nonadiabatic quan-
tum molecular dynamics (NA-QMD) method is essentially
equivalent to the DFTB scheme described here in the ze-
roth order approximation. Accordingly, it is interesting to
see whether the second order correction is of any benefit
in these kind of simulations.

For the special case of C+ − C60 collisions we per-
formed calculations for different values of the impact ve-
locity (v = 0.01 . . . 0.45 a.u.) and impact parameter
(b = 2.0, 7.5 a.u.) for randomly oriented fullerene cages.
Special care had to be taken in the definition of the initial
conditions of the EOM, since the C+ − C60 configuration
does not correspond to the ground state of the system. For
that reason, we performed separate ground state calcula-
tions for the two subsystems and combined the resulting
KS orbitals to obtain the desired charge state. The initial
ion-cluster distance was chosen large enough to prevent
any interaction and the system was then left to evolve
freely according to the EOM [Eqs. (7a) and (8)].

Figure 3 depicts the total kinetic energy loss ∆E in
the center of mass system that the projectile experiences
due to the collision. It can be directly compared to the re-
sults in Figure 3 of reference [35], which were obtained for
a single fixed collision geometry. As already shown there,
the vibrational excitation of the fullerene dominates for
smaller velocities (v < 0.1 a.u.), while mostly electronic
excitation is responsible for the energy loss at larger im-
pact energies. As the impact velocity increases, ∆E first
rises, peaks around 0.05 a.u and shows a weak increase
beyond 0.1 a.u. in our calculations. This is in variance
with the results of Kunert and Schmidt [35], which claim
velocity-independent excitation energies in the high veloc-
ity range. Taking the strong dependence on the collision
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geometry into account, an extensive phase space sampling
would be necessary to resolve this issue, which is outside
the scope of this work.

Turning now to a comparison of the predictions of
DFTB with and without second order correction, we find
only marginal differences in the results of both methods.
Such a difference could have been expected for high im-
pact velocities, but with such a large amount of energy de-
posited in the cluster, finer details of the electronic struc-
ture seem to have negligible influence.

The second order correction has however implications
for other observables. Figure 4 shows the charge of the
projectile after the collision. Here fractional charges need



472 The European Physical Journal D

Table 1. Energy ordering of different asymptotic states of the
singly positively charged C−C60 system in eV. The DFTB en-
ergies with and without second order correction were obtained
by separate calculations of the two subsystems and addition
of the results. For C60, all calculations were performed at the
DFTB optimized geometry of the neutral species. The experi-
mental results were obtained from measured ionization poten-
tials and electron affinities [53–55]. The most stable state of
each method was set to zero energy.

C C60 zeroth order second order exp.
+ 0 0.0 2.68 3.66
0 + 0.58 0.0 0.0
– 2+ 1.16 10.80 7.14. . .9.14

to be understood in the probabilistic interpretation of
quantum mechanics, since in the simulations the system
remains in a superposition of eigenstates with integer
charges also asymptotically. For higher velocities, which
correspond to higher electronic excitation as mentioned
above, the charge given by the zeroth order DFTB method
is significantly more negative than the second order one.
This can be explained by a larger contribution of the
asymptotic C− − C2+

60 state, which in the zeroth order
approximation is located only slightly higher in energy
as the initial C+ − C0

60 state. As the results in Table 1
show, this energy ordering is in striking contrast with the
one given by the second order DFTB method and exper-
iment. Although calculations of charge transfer cross sec-
tions have been performed in a zeroth order scheme [33,
34], the results of this section suggest, that in general a
more advanced treatment is absolutely necessary.

3.3 Protonated Schiff base photodynamics

As a last application we study the photodynamics of the
retinal molecule, which is of special importance in the
field of biology. This chromophore is found in a variety
of proteins, where it initiates quite different reactions in
the cell. In bacteriorhodopsin and halorhodopsin for ex-
ample, light absorption of retinal triggers the membrane
transport of protons and chloride ions, respectively. In
contrast, it starts a cascade of reactions that initiate the
vision process in rhodopsin. In all these systems, the reti-
nal is known to isomerize around a specific double bond.
The quantum yield of the photoreaction is particularly
high (Φ ≈ 0.7) and the deexcitation to the ground state
occurs in no more than 200–500 fs [57,58]. Because of
these unusual features, this system provides an interest-
ing subject for a theoretical investigation. For a complete
understanding of the retinal photodynamics it would cer-
tainly be necessary to include the full protein environ-
ment in such an investigation. However, important infor-
mation can already be drawn from the examination of
small retinal analogues like the protonated Schiff bases
(Fig. 5). These models share a polyene chain of alternat-
ing single and double bonds with retinal, as well as the
positively charged NH+

2 Schiff base group, which is cru-
cial for the function of the chromophore in the protein.

N
+

H

H

N+

H

H

Fig. 5. Top: structure of 11-cis retinal, which is found in dark
adapted rhodopsin and transforms to the all-trans form upon
absorption of light. Bottom: protonated Schiff base model used
in this study.

High level quantum chemical CASPT2 calculations on
these analogues revealed, that after absorption the system
moves out of the Franck-Condon region along the C=C
stretch normal coordinate (see Refs. [59,60] and references
therein). After inversion of single and double bonds, tor-
sion around the central C=C bond sets in. A barrierless
path then leads to a conical intersection of ground and
excited state, where efficient deactivation to the photo-
product occurs. In line with Stark spectroscopy [61,62],
CASPT2 theory predicts a large charge transfer from the
Schiff base group to the other terminus upon excitation,
that increases along the excited state pathway.

Recently, we investigated the excited state potential
energy surface (PES) obtained from static DFTB calcu-
lations in the linear response formalism and found se-
vere deviations from the CASPT2 results [63]. In fact,
the only barrierless paths found to conical intersections
with the ground state involved single rather than double
bond isomerization (in accordance with ab initio TDDFT
calculations). An intrinsic reaction coordinate connecting
Franck-Condon point and correct conical intersection (as
described in the CASSCF model) includes a significant
barrier. Thus an efficient and ultrafast reaction seems
to be unlikely at the DFT level of theory. However, one
should keep in mind, that at finite temperature molecules
posses a significant amount of kinetic energy already at the
Franck-Condon point, which allows the system to sample
a large fraction of the excited state PES. Hence, the min-
imum energy path might not necessarily provide a rep-
resentative description of the photodynamical pathway.
Moreover, nonadiabatic transitions are not restricted to
conical intersections. They can also occur in regions where
there is a finite gap between the ground and excited state
surfaces, especially when the atomic velocity is high. Our
interest is therefore to perform nonadiabatic molecular
dynamics simulations of the PSB model system to see
whether the discrepancies between DFT predictions and
experiment remain at a full dynamical level.

A complete description of the photochemical process
would in principle require a full phase space sampling
prior to excitation. Since the maximum absorption is
strongly geometry dependent, we nevertheless take only
the relaxed geometry of the ground state minimum into
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account. At the Franck-Condon point random velocities
corresponding to a temperature of 300 K are assigned to
the atoms and the system is left to evolve freely with-
out further constraints. The excitation itself is induced by
a Gaussian shaped laser pulse with a central frequency
of 3.45 eV, that is slightly detuned with respect to the
maximum absorption to avoid population of higher ex-
cited states close in energy. The maximum absorption
itself is located at 3.88 eV in the second order DFTB
method and agrees well with first principles TDDFT cal-
culations [63] (4.03 eV) as well as CASPT2 [64] (4.02 eV)
and experiment (3.85–4.25 eV [65]). Similar to the case
of trans-butadiene, the excitation energy is strongly un-
derestimated at 2.66 eV, if the second order correction
is not taken into account. Since the nonadiabatic excita-
tion process depends strongly on the gap between ground
and excited state PES, the DFTB method without elec-
tronic selfconsistency will therefore provide an unrealistic
description of the photodynamics and will not be used
here.

The duration and fluence of the laser pulse were cho-
sen to be 5.9 fs and 5.4 mJ/cm2 (A = 0.7 gauss cm).
For these parameters the total energy of the system rises
by 3.88 eV, which corresponds to an one-photon transi-
tion to the first excited state. Admittedly, the latter fact
provides only limited evidence for a clean preparation of
the S1 state. Unfortunately, there is no straightforward
procedure to obtain the different state populations, since
in static and time dependent DFT only the electron den-
sity but no many-particle states are available. For the sys-
tem at hand, the next absorbing transition is located at
4.98 eV with an oscillator strength of less than one third
of the S0 − S1 excitation. Taking into account that the
pulse is centered at 3.45 eV with a frequency spread of
roughly 0.2 eV/�, the contribution of other excited states
is expected to be neglible, since they are far off resonance.

For a total simulation time of 1.1 ps, 100 trajectories
were propagated with a timestep of 12.1 as. This guaran-
teed an energy conservation of ∆E/E ≈ 10−8. With these
parameters, one trajectory took about 22 minutes CPU
time on an Intel Xeon 3.06 GHz processor.

The results of the simulations show that the initial dy-
namics on the excited PES are dominated by C–C stretch
motions with large amplitudes up to 0.15 Å. This is in
agreement with resonant Raman studies on the PSB in
solution and in the rhodopsin protein [67–69]. In contrast
to the mentioned CASPT2 calculations however, the bond
alternation is only inverted for roughly half of the trajec-
tories as shown in Figure 6. Moreover, the time-averaged
bond alternation of 0.060 Å is only slightly reduced with
respect to the ground state minimum (0.063 Å). Consid-
ering now the dihedral angle which represents the torsion
around the central double bond, Figure 7 shows that none
of the 100 trajectories resulted in a successful isomeriza-
tion within 1 ps. We find much larger amplitudes for the
rotation around single bonds, with torsion angles up to 80◦
for certain trajectories, although also here no isomeriza-
tion is completed in the simulation time. This preference of
single over double bond isomerization in DFT based meth-
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Fig. 6. Bond alternation in the PSB model system for all
calculated trajectories, estimated as the mean bond length dif-
ference between neighboring C–C single and double bonds.
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Fig. 7. Torsion angle around the central double bond of the
PSB model for all calculated trajectories.

ods was already found in the static investigation of refer-
ence [63]. Another prediction of CASPT2 theory, which
is in nice agreement with Stark spectroscopy has already
been mentioned. The S0 − S1 excitation and the subse-
quent motion on the S1 PES is known to involve a large
charge transfer away from the Schiff base group. We how-
ever, do not observe any significant charge transfer in our
simulations.

Finally, it is interesting to analyze whether deexcita-
tion to the ground state occurred. In Figure 8 the exci-
tation energy of the system is shown, which is given by
the difference of the time-dependent and ground state en-
ergy at the same geometry. Directly after the end of the
laser pulse, a small reduction of the excitation energy is
observed (≈ 0.3 eV), which is related to an elongation of
all bonds in the PSB model. There is little change from
this point on and nonadiabatic transitions, which would
manifest in a sharp drop of the excitation energy, do not
occur. In our DFT based treatment, deactivation is there-
fore predicted to happen on longer timescales, presumably
involving the slower processes of internal conversion and
fluorescence. At any rate, ultrafast isomerization with a
concomitant intersection of ground and excited state is
not found to be the dominant process. This is in stark con-
trast to the results of Vreven et al. [70], who showed that
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Fig. 8. Excitation energy of the PSB model versus time in eV.
The inset shows the transition to the excited state due to the
applied laser pulse.

double bond isomerization can occur in less than 100 fs
for the model at hand.

The simulations of this section could be extended by
computing a larger number of trajectories or a longer
propagation time. Considering the narrow distribution of
the results presented in Figures 6 to 8, it is not very likely
that an improved sampling would reveal new information.
Extension of the simulation time might seem advanta-
geous in light of the experiments by Logunov et al. [71],
who measured an excited state life time of 2–3 ps for the
full retinal chromophore [Fig. 5 (top)] in solution. How-
ever, for the shorter PSB model used in this study, the
excited state PES has been found to be much steeper [59]
in line with the mentioned study of Vreven et al. [70].
Hence, the photochemical process should be completed in
the chosen simulation time of 1 ps.

To summarize, we find that our simulations disagree
in most aspects with CASPT2 results and experiment. At
the same time we confirmed the static investigations of the
DFT based potential energy surfaces from reference [63]
by dynamical calculations. Given that, (i) time-dependent
DFTB and first principles TDDFT, as well as, (ii) TDDFT
with different exchange-correlation functionals (local, gra-
dient corrected or hybrid) yield qualitatively the same pic-
ture [63], a correct DFT based description of the retinal
photodynamics is highly unlikely. Only very recently, fail-
ures of TDDFT in the description of charge transfer states
were reported [72,73]. Exchange-correlation functionals
that address this shortcoming for long-range transfer have
also been recently proposed [74–76]. It will be interesting
to see whether these developments can also remedy the
problems with intra-molecular charge transfer found here.

4 Summary

In this work, we presented a mixed quantum-classical ap-
proach to simulate the coupled dynamics of electrons and
nuclei. The method is based on a second order expansion
of the TDDFT Lagrangian around a suitable reference
density. We showed that the inclusion of the second or-
der term improves both qualitatively and quantitatively

the optical spectrum of molecules. For trans-butadiene a
strong blueshift of the absorption was observed together
with a significant reduction of oscillator strength. In this
context, the analogy with the linear response approach to
TDDFT revealed that the zeroth order treatment of the
Lagrangian corresponds to an uncoupled response that ne-
glects collective effects. Moreover, experience with the lin-
ear response implementation suggests that this absorption
shift is quite general and especially large for π−π∗ transi-
tions. For n−π∗ excitations however, the coupling is usu-
ally weak and realistic results might already be achieved
in the zeroth order approximation. In the simulations of
high energy collision of Section 3.2, there is little differ-
ence in the predictions of both schemes when the interest
is in energy transfer only. This is because the process is
dominated by vibrational rather than electronic excita-
tion in the regime of low energy transfer, where the dif-
ferent level structure could be resolved. Considering now
the charge transfer, we found important differences for
the C+ − C60 system, which were attributed to the prob-
lematic description of the asymptotic states in the zeroth
order scheme. Charge transfer played also an important
role in the nonadiabatic molecular dynamics simulations
of the protonated Schiff base. In contrast to experiment we
found no isomerization. This result is a negative, but we
think important one. It should be stressed, that this fail-
ure is not introduced by our approximations but already
inherent in TDDFT itself.
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Appendix

In this appendix we outline the derivation of the equations
of motion (Eqs. (7a) and (8)) starting from the Lagrangian
in equations (3a) to (3c). Taking the approximation for the
second order term in equation (4) into account and col-
lecting the terms of equation (3b) into the term Erep(RA),
the latter can be written:

L(bµi,RA) =
1
2

∑

A

MAṘ2
A − Erep − 1

2

∑

AB

∆qAγAB∆qB

−
occ∑

i

∑

µν

[
b∗µi

(
H0

µν − i〈φµ|φ̇ν〉
)
bνi − ib∗µiSµν ḃνi

]
. (13)

We note that the atom centered basis functions φµ(r−RA)
depend implicitely on time due to the motion of the nuclei
and hence need to be differentiated accordingly. In order
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to establish the Euler-Lagrange equations for the wave-
function coefficients, the quantities ∂L/∂b∗ and ∂L/∂ḃ∗
need to be evaluated. We find ∂L/∂ḃ∗ = 0 and

∂L
∂b∗µi

= −
occ∑

i

∑

ν

[(
H0

µν − i〈φµ|φ̇ν〉
)
bνi − iSµν ḃνi

+
1
2
Sµνbνi

∑

C

(γAC + γBC)∆qC

]
∀µ ∈ A; ν ∈ B, (14)

where the last term stems from the dependence of the
Mulliken charges on the wavefunction coefficients accord-
ing to equation (5). With the definition of the Hamiltonian
in equation (7b) and using the chain rule for differentiation
of the basis functions, we arrive at the equation of motion
for the electrons, equation (7a). Variation with respect to
bµi leads to the complex conjugate of this equation. The
derivation of the force equation is more involved. Here we
have

∂L
∂RA

= −dErep

dRA
−

∑

BC

dqB
dRA

γBC∆qC−1
2

∑

BC

∆qB
dγBC

dRA
∆qC

−
occ∑

i

∑

µν

[
b∗µi

(
dH0

µν

dRA
− i

d

dRA
〈φµ|φ̇ν〉

)
bνi−ib∗µi

dSµν

dRA
bµi

]
,

(15)

and

∂L
∂ṘA

= MAṘA + i
occ∑

i

∑

µν

b∗µi

〈
φµ

∣∣∣∣
dφν

dRA

〉
bνi, (16)

where again the chain rule has been used to find the depen-
dence of 〈φµ|φ̇ν〉 on the nuclear velocities. After a lengthy
but straightforward calculation the Euler-Lagrange equa-
tions ∂L/∂RA − (d/dt)∂L/∂ṘA = 0 may be recast in the
following form:

MAR̈A = −
occ∑

i

∑

µν

b∗µi

(
dH0

µν

dRA
+
dSµν

dRA

∑

B

γAB∆qB

)
bνi

+
occ∑

i

∑

µν

(
ib∗µi

〈
dφµ

dRA

∣∣∣∣φν

〉
ḃνi + c.c.

)

+
occ∑

i

∑

µν

(
ib∗µi

〈
dφµ

dRA

∣∣∣∣φ̇ν

〉
bνi + c.c.

)

−∆qA
∑

B

dγAB

dRA
∆qB − dErep

dRA
. (17)

Inserting the electronic equation of motion equation (7a)
leads to:

MAR̈A = −
occ∑

i

∑

µν

b∗µi

(
dH0

µν

dRA
+
dSµν

dRA

∑

B

γAB∆qB

)
bνi

+
occ∑

i

∑

µνδγ

(
b∗µi

〈
dφµ

dRA

∣∣∣∣φν

〉
S−1

νδ Hδγbγi + c.c.
)

−
occ∑

i

∑

µνδγ

(
ib∗µi

〈
dφµ

dRA

∣∣∣∣φν

〉
S−1

νδ 〈φδ|φ̇γ〉bγi+c.c.
)

+
occ∑

i

∑

µν

(
ib∗µi

〈
dφµ

dRA

∣∣∣∣φ̇ν

〉
bνi + c.c.

)

−∆qA
∑

B

dγAB

dRA
∆qB − dErep

dRA
, (18)

which reduces to formula (Eq. (8)) for a complete basis
(
∑

γδ |φγ〉 S−1
γδ 〈φδ| = 11).

Interestingly, different quantities like the total energy
or (if the force of Eq. (18) is used) momentum are found
to be constants of the motion in the present approach,
even though the equations of motion are based on a fi-
nite order approximation of the DFT Lagrangian. Here,
we show that also the total charge of the system is an ex-
actly conserved quantity. With the definition of the atomic
Mulliken charges qA in equation (5), it follows:

d

dt

(
∑

A

qA

)
=

occ∑

i

∑

µν

[
ḃ∗µiSµνbνi + b∗µiṠµνbνi + b∗µiSµν ḃνi

]

=
occ∑

i

∑

µν

[
b∗µi

(
iHµν − 〈φ̇µ|φν〉

)
bνi + b∗µiṠµνbνi

−b∗µi

(
iHµν + 〈φµ|φ̇ν〉

)
bνi

]

= 0, (19)

where in the second line the equations of motion for bµi

and b∗µi have been inserted.
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